Reversible dispersion and release of carbon nanotubes using foldable oligomers.
نویسندگان
چکیده
Foldamers are synthetic and designable oligomers that adopt a conformationally ordered state in selected solvents. We found that oligo(m-phenylene ethynylene)s, which are single-stranded foldamers, can be made to reversibly disperse and release single-walled carbon nanotubes (SWCNTs) simply by changing the solvent, consistent with a change from an unfolded state to a folded state. Using absorption spectroscopy, atomic force microscopy, Raman spectroscopy, and electrical measurements, we observed that the foldamer-dispersed SWCNTs are individually well-dispersed and have a strong interfacial interaction with the foldamers. In contrast, the released SWCNTs appeared to be free of foldamers. Under illumination, transistors based on the foldamer-dispersed SWCNTs demonstrated significant photoresponse, apparently due to photoinduced charge transfer between the foldamers and SWCNTs. The reported nanocomposites may open an alternative way of developing optoelectronic devices or sensors based on carbon nanotubes.
منابع مشابه
Increasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes
In this study the effect of using multi-walled carbon nanotube (MWCNT) on flexural and compressive strengths, ultimate displacement and energy absorption capability of standard cement mortar considering different weight percentages of nanotubes as well as different dispersion methods has been investigated. Influential point in adding nanotubes to the composites is their proper dispersion, which...
متن کاملIncreasing flexural strength and toughness of cement mortar using multi-walled Carbon nanotubes
In this study the effect of using multi-walled carbon nanotube (MWCNT) on flexural and compressive strengths, ultimate displacement and energy absorption capability of standard cement mortar considering different weight percentages of nanotubes as well as different dispersion methods has been investigated. Influential point in adding nanotubes to the composites is their proper dispersion, which...
متن کاملRole of pH controlled DNA secondary structures in the reversible dispersion/precipitation and separation of metallic and semiconducting single-walled carbon nanotubes.
Single-stranded DNA (ss-DNA) oligomers (dA20, d[(C3TA2)3C3] or dT20) are able to disperse single-walled carbon nanotubes (SWNTs) in water at pH 7 through non-covalent wrapping on the nanotube surface. At lower pH, an alteration of the DNA secondary structure leads to precipitation of the SWNTs from the dispersion. The structural change of dA20 takes place from the single-stranded to the A-motif...
متن کاملEffects of MWCNTs Dispersion on the Microstructure of Sol-Gel Derived Hydroxyapatite
Stable homogeneous dispersions of carbon nanotubes (CNTs) were prepared using ethanol as dispersing agent. Then, using sol-gel method, dispersion in the hydroxyapatite matrix and its effects on the microstructure were investigated. The phase composition, chemical structure and morphological and size analyses were performed using XRD, FT-IR, SEM, TEM/SAED/EDX and Raman spectroscopy. The influenc...
متن کاملPreparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature
The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 132 40 شماره
صفحات -
تاریخ انتشار 2010